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Abstract 

Simulation of the land subdivision process is useful in many applied and research areas. 

Planners use such tools to understand potential impacts of planning regulations prior to their 

implementation. While the credibility of both landuse change and urban growth models 

would be enhanced by integrating capabilities to simulate land subdivision, such research is 

lacking in the published literature. Of the few subdivision tools that exist, most are either not 

fully automated or are unable to generate realistic subdivision layouts. This limits their 

applicability, particularly for high resolution landuse change models. In this paper, we 

present a fully-automated land subdivision tool that uses vector data and is capable of 

generating layouts with both lot and street arrangements for land parcels of any shape.  When 

the new streets are generally parallel to each other and lots are of approximately the same 

size, the simulation’s output very closely resembles observed subdivision patterns in our 

southeastern Australia study area.  From this, we identify opportunities to improve the 

subdivision tool for a next version. Future research will also explore how this subdivision 

tool could be used in conjunction with a landuse change model for urban and regional 

planning. 
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1. INTRODUCTION 

Land subdivision is a standard practice in land surveying that aims to partition a tract of land 

into smaller sized ‘lots’ (Easa, 2008). It is normally conducted using expert knowledge and 

skills, rigorous field work, both spatial and non-spatial data, and through incorporating a 

range of zoning and development rules (Chen and Jiang, 2000; Wakchaure, 2001). 

Simulation of the land subdivision process is useful in many applied and research areas. For 

example, exploring the effects of various subdivision layouts on a given parcel is an integral 

component of ‘build out’ analysis, which is performed by planners who seek to understand 

potential impacts of planning regulations prior to their implementation (Wakchaure, 2001). 

Similarly, land subdivision plays a vital role in urban growth (Stevens and Dragicevic, 2007, 

Vanegas et al., 2009; Morgan and O'Sullivan, 2009) and landuse change modelling 

(Alexandridis and Pijanowski, 2007). Stevens and Dragicevic (2007) in their study of urban 

growth modelling emphasize the importance of incorporating automatic land subdivision 

capability in theirs and similar models to maximize their effectiveness. In summary, models 

and tools capable of simulating the land subdivision process are in demand by planners and 

researchers alike.  

 

Any simulation model should meet certain criteria to be considered well designed and 

practical. For example, Jakeman et al. (2006) argue that a model developed to influence 

decision-making should be tested against criteria such as ‘fitness for purpose’ and 

transparency. In this vein, Parker et al. (2002), suggest that a model’s ability to approximate 

reality is an important evaluation criterion - as a model’s behaviour approaches reality, its 

fitness for purpose increases. For example, Rietveld et al. (2010) and Piuleac et al. (2010) 

evaluated the performance of their models by comparing predicted values with observed or 

known values, and claimed that the models have achieved the design goals as the predicted 



values approximated the observed values well. Further criteria for evaluating a simulation 

model include the level of automation and the computational complexity (Kohn et al., 2009).  

Keeping the tool computationally simple is vital. It is easy for a complex tool to exceed 

current computational power when the tool needs to simulate subdivision of a large area.  

 

 Following from these issues, there are several sub-criteria against which the tool should be 

evaluated in order to assess the extent to which it meets the fitness for purpose criterion. 

These are: (1) Can the tool generate both lots and streets? (2) Are all lots given access to the 

street network? (3) Can parcel boundaries and shapes be realistically portrayed? (4) Can the 

tool generate cul-de-sacs and multiple direction streets? (5) Is the tool able to make the 

optimum use of space by intelligently choosing an appropriate subdivision layout for a given 

parcel? Adding the level of automation and the computation efficiency to this list yields 

seven criteria against which to assess a given model. Meeting all of these criteria is not 

necessarily our aim at this stage. The development of a tool is an incremental process – any 

given version of a particular tool will inevitably involve some compromises. We argue that 

the tool presented here represents an improvement on previous tools and we assess it and 

existing tools against the aforementioned criteria in subsequent sections.  

 

Information on attempts to simulate land subdivision is limited. Few studies have modelled 

land subdivision either as an integrated module in a landuse model, or as a stand alone 

application. One notable exception is, Alexandridis and Pijanowski (2007), who used a 

parcelization algorithm in an agent-based landscape model. Further, Ko et al. (2006) 

developed a model called ‘FLOSS’ to simulate ownership fragmentation. Recently, Morgan 

and O'Sullivan (2009) derived a binary space partitioning algorithm to generate cadastral 

spatial patterns of cities. However, all of these land subdivision automations are developed 



for raster-based landscape models, and are performed at relatively coarse resolutions. Street 

generation, which should accompany a realistic land subdivision simulation, is missing in all 

three studies. On the whole, subdivision layouts generated by these raster-based tools do not 

sufficiently resemble the observed subdivision layouts produced by traditional methods. A 

major reason for this inferiority of raster-based approaches is the inability of regular 

tessellation of cells of the same size and shape to simulate irregular and heterogeneous real-

world phenomena (Moreno et al., 2008). Hence, raster-based tools can not realistically 

portray parcel boundaries and shapes. The computational simplicity of the raster versus 

vector-based approaches explains why land subdivision more commonly uses the former. We 

are aware of only two studies that do use a vector based approach and incorporate street 

generation. Wakchaure (2001) used a semi-automated tool to generate realistic subdivision 

layouts. This tool is capable of generating large-scale subdivision layouts (with both lot and 

street arrangement). However, its semi-automated nature is itself a limitation, particularly 

when the tool is to be used as an integral component in a simulation model. Vanegas et al. 

(2009) developed a fully automated parcel subdivision module which is capable of generating 

both lot and street arrangements. Their module uses recursive binary division on an initial 

parcel until lots of desired size are achieved. However, the model is computationally 

complex, and does not aim to optimize the use of space in a given parcel when lots and 

streets are generated.   

 

Hence, our primary objective  in this study was to develop a fully automated vector-based 

land subdivision tool to generate complete subdivision layouts, showing both lot and street 

arrangements for a given parcel of any shape and its existing street arrangements, all while 

remaining relatively simple computationally. Such a tool should be capable of selecting a 

subdivision layout that generates the highest number of lots and the lowest number of streets 



for any given parcel. Subdividing an irregularly-shaped land parcel is more challenging than 

subdividing a regularly-shaped parcel. Thus, the other objective was to identify areas where 

further development of the tool is warranted, particularly to improve its ability to generate a 

variety of realistic subdivision layouts that can handle many situations involved in 

subdividing irregular-shaped land parcels.  

 

2. METHODS 

As used here, the term ‘parcel’ describes a land area that is managed as a single, relatively 

large unit and which is the target of the subdivision process. The term ‘lot’ refers to a 

relatively small, single subdivided unit of land resulting from the subdivision of a much 

larger parcel.  

 

The subdivision tool described in this paper handles parcels that are either rectangular/square 

or irregular in shape. This subdivision tool is an extension of a tool we previously developed 

to handle situations where all parent parcels for subdivision are either rectangular or square in 

shape (Wickramasuriya et al., 2010). Here, we not only extend the subdivision tool, but also 

validate the tool’s performance against observed data. Before going into the details of 

extension and validation, we first briefly revisit the concepts and methods used in the original 

tool. 

 

2.1 Revisiting the methodology for automating a rectangular parcel subdivision 

In addition to the constraint of rectangular shaped parent parcel, we assume that all lots 

generated by subdividing a target parcel also remain rectangular or square in shape. Lot 

length and lot width are key parameters of the automation, and are user inputs into the tool.  

The tool aims at achieving the maximum number of lots for each target parcel while creating 



the least possible number of new streets. The implemented procedure also ensures that all the 

lots in the subdivision layout have access to at least one street.  

 

The subdivision tool basically evaluates a parent parcel to be subdivided against four 

candidate subdivision layouts as shown in Figure 1. In Figure 1, Pw is the parcel width, Pl is 

the parcel length, Lw is the lot width, Ll is the lot length, and s is the street width.  

 

Figure 1. (a) Parent parcel, (b) Subdivision layout: blocks of lots and new streets are parallel 

to parcel length, (c) blocks of lots are parallel to parcel width, but new streets are parallel to 

parcel width, (d) blocks of lots and new streets are parallel to parcel width, (e) blocks of lots 

are parallel to parcel length and new streets are parallel to parcel length. 

 

Note that in a subdivision layout, a stack of lots is termed a ‘block of lots’. For example, the 

layout shown in Figure 1(b) is comprised of two blocks of lots and six rows of lots. Hence, 

the maximum number of lots generated in a subdivision layout is the product of ‘blocks of 

lots’ and ‘rows of lots’.  

 

The tool chooses the subdivision layout that generates the highest number of lots with which 

to proceed. When it is impossible to select a layout based on the criterion ‘number of lots’ 

(i.e. two or more layouts generating the same number of lots), preference is given to the 

layout that generates the minimum number of new streets.   



 

Calculating the maximum possible number of lots and the associated number of new streets 

for a given subdivision layout is an iterative process. This iterative process is briefly outlined 

in the next subsection using the subdivision layout shown in Figure 1(b) as an example. A 

more comprehensive description of this process can be found in Wickramasuriya et al. 

(2010). 

 

 

Calculating the number of blocks of lots, rows of lots and new streets 

Step 1: Given the parcel width (Pw) and lot length (Ll), the number of blocks of lots (b) that 

could be generated is calculated as;  

 

௪ܲ
ܮ

ൗ  ൌ ܾ  ܴ          (1) 

 where b is the quotient and R is the remainder/Ll. 

 

Depending on the number of existing streets adjacent to the parent parcel and the number of 

blocks of lots returned from equation 1, there may be a need to generate new streets to 

provide access to all lots in the subdivision layout.  

 

Step 2: The number of new streets required can be easily calculated using equations 2, 3 or 4. 

If the number of blocks of lots (b) is odd, and the number of existing streets adjacent to parcel 

length (el) is zero, the minimum number of new streets required (nl) is given by; 

 

݊ ൌ ݉  1          (2) 



  

 where m is the quotient of integer division b/2. 

 

If b is odd and el is either 1 or 2; 

 

݊ ൌ ݉          (3) 

 

Figure 2 shows examples for each of the above situation using a case of three blocks. In 

Figure 2, the hatched symbol represents existing streets and the white stripes between blocks 

of lots represent new streets.  

 

 

Figure 2. New street requirement for an odd number of ‘blocks of lots’ (a) for zero existing 

streets, (b) for one existing street, (c) for two existing streets, along the parcel length. 

 

When b is an even number and el is either zero or 1, nl can be calculated using equation 3. If b 

is even and el is 2; 

 

݊ ൌ ݉ െ 1          (4) 

 

Step 3: Next, the tool checks if the remaining width (Tr) after calving out the blocks of lots is 

enough to accommodate new streets. Tr is given by; 



 

ܶ ൌ ܴ ൈ           (5)ܮ 

 

Given the street width (s), total width required to accommodate all new streets (Ts) can be 

calculated as; 

 

௦ܶ ൌ ݊  ൈ  (6)         ݏ 

 

If Ts ≤ Tr, the calculation stops at this point. If not, one block is dropped to find space for new 

streets. Dropping one block necessitates recalculation of the number of new streets for the 

revised number of blocks (b-1). This means that steps 2 and 3 are repeated until the final 

number of blocks (b*) and new streets (nl
*) are reached.  

 

Step 4: Once the final number of streets (nl
*) is known, the total width required to 

accommodate nl
* is calculated using equation 6. Therefore, the remaining width (Wr) that can 

actually be used to accommodate final number of blocks is given by; 

 

ܹ ൌ  ௪ܲ െ ሺݏ ൈ ݊
 ሻ         (7)כ

 

Final lot length (Ll
*) therefore becomes; 

 

ܮ
כ ൌ ܹ

ൗכܾ          (8) 

Hence, final lot length is either equal to or slightly higher than the user specified lot length.  

 



Figure 3 summarises the iterative process employed in deciding the final number of blocks of 

lots and new streets. 

 

 

Figure 3. The iterative process for deciding final number of blocks of lots and new streets. 

 

In addition to the streets calculated above that run parallel to parcel length, there should be at 

least one street running adjacent to the parcel width that acts as a connecting street. Unless 

there is an already existing street to fulfil this requirement, a new street must be generated in 

the subdivision layout. This calculation is carried out along with the calculation of rows of 



lots. Rows of lots are computed by dividing parcel length (Pl) with the lot width (Lw). The 

procedure adopted to reach the final number of rows of lots is similar to the procedure 

outlined in Figure 3, except that the process iterates at most twice. This is the case because 

the tool creates only one connecting street (given that there are no existing streets to act as 

connecting streets), and it assumes that the lot width is always higher than the street width. 

 

The subdivision tool calculates the final number of blocks of lots, new streets and rows of 

lots under each subdivision layout illustrated in Figure 1. It then selects the layout that 

matches the previously established selection criteria, and performs the actual subdivision. 

 

2.2 Extended methodology to handle subdivision of an irregularly-shaped parcel 

In the majority of practical situations, land parcels that need to be subdivided exhibit various 

irregular shapes that deviate from the ‘perfect’ rectangular or square shape. This calls for 

methods that can handle the subdivision of irregularly-shaped parcels. However, reported 

research on automating subdivision of irregular parcels is limited. We attempt to fill this gap 

by extending the subdivision automation procedure discussed in preceding sections. 

 

Our approach is to generate a Minimum Bounding Rectangle (MBR) for the irregularly-

shaped parcel, subdivide the MBR using the same algorithm explained in Section 2.1, and 

then clip the subdivided MBR using the parent parcel as a mask. Every polygon’s minimum x 

and y extent is given by its spatial envelope. The size of the envelope for the same polygon 

can vary depending on its orientation in space. Once faced with an irregularly-shaped parcel, 

our algorithm calculates the area of the envelope of that parcel, and stores the value in 

memory. Thereafter, the parcel is rotated by a small rotation angle (Δθ) around its centroid, 

and the area of the new envelope is calculated. This new area value is compared to the area 



stored in memory.  If the new area is smaller than the area calculated in the previous step, 

area stored in memory is replaced by the new value. This process is repeated until the 

envelope with the minimum area is found, and that envelope is considered the MBR for that 

parcel (see Figure 4). The rotation angle that gives the smallest envelope is kept in memory 

for later use.  

 

Figure 4. Generating the minimum bounding rectangle for an irregularly-shaped parcel 

 

The least area envelope, or minimum bounding rectangle (MBR), is then converted into a 

polygon feature, which is aligned in horizontal-vertical planes. The MBR is partitioned using 

the algorithm explained in Section 2.1. This results in lots and new streets that are not 

oriented in the initial direction of the parent parcel. These are rotated back to the initial 

orientation of the parent parcel using the previously stored rotation angle. Lots and streets are 

then clipped using the parent parcel as a mask. Figure 5 shows the flow of steps involved 

when subdividing an irregularly-shaped parcel.  

 



 

Figure 5. A method to subdivide an irregular shaped parcel. 

 

This method can be used to subdivide a parcel of any shape. However, the resulting lots 

always remain rectangular unless some parts of the lots are clipped out by the original parent 

parcel as per the last step.  

 

2.3 Implementation 

Both rectangular and irregular subdivision automations are implemented as macros in 

ArcGIS software using ArcObjects and VBA programming. The main user input to the tool is 

a polygon shapefile which includes both parcel and street polygon features. The attribute 

table of the shapefile should contain two additional attributes; ‘Label’ and ‘Shape_Area’. 

‘Label’ should only contain two attribute values; ‘parcel’ and ‘street’. ‘Shape_Area’ contains 

actual area of each polygon. At the run time, user is requested to enter values for minimum 

lot width, lot length and street width.  



 

The tool checks if the first parcel passed in for subdivision is rectangular, and if not it 

generates a MBR for the parcel. It then rotates the parcel or the MBR parallel to 

horizontal/vertical planes. Afterwards, the tool evaluates the rectangular parcel or the MBR 

for all four subdivision layouts (as shown in Figure 1), and selects the best layout. It then 

generates lots and new streets according to the selected layout to match automatically 

calculated parameters (based on user specified constraints such as minimum lot width, lot 

length and street width). These parameters are the final number of ‘blocks of lots’, new 

streets, ‘rows of lots’ and connecting streets. If the subdivision is carried out for an 

irregularly-shaped parcel, new lots and streets are clipped using original parent parcel as a 

mask. Subsequently, the original parcel is replaced with the newly generated lots and streets. 

Then the tool begins to subdivide the next parcel if requested.  

 

2.4 Validation of the subdivision tool 

Model evaluation and testing represent one of the most important steps in any environmental 

model development cycle (Jakeman et al., 2006). We recognize the importance of model 

validation in terms of how best our tool can generate realistic subdivision patterns.  

 

Careful observations of real land subdivisions in urban/suburban/rural areas reveal the 

existence of two different subdivision layouts related to irregularly-shaped parcel 

subdivision. For the first of these, subdivided lots predominantly orient in one direction with 

all new streets (if existing) mostly running parallel to each other. Lots within this layout are 

predominantly rectangular in shape. We refer to this subdivision as ‘type A’ from here 

onwards. Figure 6 shows three such examples from a residential area called Albion Park in 

New South Wales of Australia. The other layout (‘type B’ subdivision) is comprised of either 



rectangular or irregular-shaped lots that are oriented in many directions, as well as new 

streets running in several directions. Some streets in type B layout do not completely traverse 

the parcel, unlike in type A layouts. Figure 7 shows two examples for this subdivision type 

from the same residential area.  

 

 

Figure 6. Observed subdivision layouts in Albion Park, New South Wales where lots are 

nearly rectangular and oriented mostly in one direction with: (a) zero new streets, (b) one new 

street, (c) many new streets. 

 

 

 



Figure 7. Two examples for observed subdivision layouts where lots are either rectangular or 

irregular, and are oriented in several directions 

 

We anticipated that the subdivision tool would not be able to produce layouts that closely 

resemble type B subdivision, because the tool is not capable of generating either streets 

running in several directions, or streets that do not completely traverse a parcel. Yet, we were 

interested to know how the subdivision layouts generated by the tool for type B subdivision 

scheme deviate from the observed layouts. Therefore, the ability of the subdivision tool to 

generate layouts for both types was tested. Fourteen parent parcels of various sizes that have 

been subdivided according to the type A scheme, and seven parent parcels of various sizes 

which have followed the type B subdivision scheme were selected. Relative scarcity accounts 

for the lower number of parent parcels used in the test for type B scheme. The subdivision 

tool was then used to generate subdivision layouts for each of the parent parcel. Lot width 

and lot length of the most frequently observed lot from each subdivision layout were fed as 

input parameters to the subdivision tool. Observed subdivision layout and the subdivision 

layout generated by the tool (also referred to as model-generated layouts) for each parent 

parcel were compared visually as well as statistically.  

 

 

3. RESULTS AND DISCUSSION 

3.1 Validation 

The ability of the subdivision tool to generate observed subdivision layouts was assessed 

using visual and statistical tests. We first discuss the tool’s performance for type A 

subdivision, and then for type B subdivision.  

 



3.1.1 Type A subdivision 

The tool is able to produce very similar subdivision layouts in all cases for which type A 

subdivisions were carried out. Three examples of the tool’s performance for varying parent 

parcel sizes are shown in Figure 8. In all cases, the number of streets and number of blocks of 

lots generated by the tool are exactly the same as those of observed layouts. Moreover, the 

orientation of all streets and majority of lots are also the same for observed and model-

generated layouts. Locations of new streets also clearly match with the observed layouts.  

 

Figure 8. Comparison of observed and model-generated subdivision layouts for regular 

subdivisions with: (a) no new streets created, (b) one new street created, (c) many new streets 

created.  

 



For example, the observed subdivision layout in Figure 8(a) has two blocks of lots and zero 

new streets, while the model-generated layout also contains two blocks of lots and zero new 

streets. Figure 8(c) is a more complex subdivision layout where the tool has succeeded in 

generating four new streets and ten blocks of lots to match the observed layout.  

 

Lots generated by the subdivision tool match those of observed layouts most of the time, 

except towards either ends of blocks of lots. Observed lots in these areas tend to change 

orientation and sometimes size and shape. Lots generated by the tool always keep to the 

rectangular shape, unless some parts are clipped out by the parent parcel boundary during the 

last step of the automation. This step actually results in lots that are smaller than the rest of 

the lots. One solution to this problem is to merge those smaller lots into adjacent ones until 

there is no lot available with an area less than the minimum lot size. Automating this task is 

challenging as there are many different ways one could merge smaller lots into adjacent ones. 

However, a solution to this problem is planned for further development of the subdivision 

tool.  An incentive to strive for implementing such a solution is an expected improvement in 

lot size and shape achieved for those lots along the border.  

 

An accuracy assessment of the tool shows that it generates exactly the same number of new 

streets that are oriented in exactly the same direction as observed in all fifteen subdivision 

layouts tested. Furthermore, all new streets in the model-generated subdivision layouts 

overlap with all corresponding streets in the observed layouts along the full street length. The 

average percentage of street area overlap of 91.4% between model-generated and observed 

layouts further verifies a high location accuracy of new streets generated by the tool.  

 



To test the accuracy of generated lots compared to the observed, four indices: 1) number of 

lots, 2) mean lot size, 3) Standard Deviation of Lot Sizes (SDLS), and 4) Mean Shape Index 

(MSI), were calculated for both observed and model-generated layouts for all fifteen 

instances. MSI is a measure of shape complexity found in Fragstats (McGarigal and Marks, 

1995). For our purpose, we treat MSI as the sum of each lot's perimeter divided by the square 

root of lot area (in hectares) for all lots, adjusted for circular standard ( for polygons) , and 

divided by the number of lots. The correlation coefficient and its significance for two indices 

(number of lots and mean lot size) between observed and model-generated layouts were 

examined. Furthermore, a t-test was performed considering observed and model-generated 

layouts as two independent treatments and fifteen layouts as replicates. The hypothesis tested 

was; 

 

H0:  Population mean for each index is the same between observed and model-

generated layouts.  

H1: Population means are different. 

 

Table 1 shows results of two statistical tests for two selected indices, while Table 2 lists 

summary statistics for two other indices.  

 

Table 1. Correlation coefficient and t-Test statistics for two selected indices (type A) 

 
Correlation 

coefficient 
p value of t-Test 

Number of lots 0.99* 0.8762 

Mean lot size 0.92* 0.4616 

* significant at 0.01 alpha level 



 

Table 2. Summary statistics for two selected indices (type A) 

 
Average value 

Observed Model 

LSSD 0.0084 0.0082 

MSI 1.46 1.29 

 

It is possible that strong correlation coefficients are not always significant. A strong 

correlation coefficient could merely be a result of chance when the sample size is small. 

Therefore, it is important to test the significance of the correlation in this case. Correlation 

coefficients for number of lots and mean lot size between observed and model-generated 

subdivision layouts are strongly positive, as well as significant at 0.01 alpha level. 

Furthermore, results of the t-test do not provide evidence to reject the null hypothesis. The 

average values for LSSD and MSI indices are also comparable between the model and 

observed layouts. In short, the tool is capable of producing subdivision layouts that closely 

match the observed subdivision layouts for type A subdivisions.  

 

3.1.2 Type B subdivision 

A second subdivision type is characterized by new streets and lots of various sizes oriented in 

several directions within a subdivision layout. As expected, the subdivision tool described in 

this paper is only able to partially capture the characteristics of observed subdivision layouts 

of this type. Figure 9 shows the observed and model-generated subdivision layouts for a 

parcel that follows type B subdivision. 

 

 



 

Figure 9. Comparison of observed and model-generated subdivision layouts for irregular 

subdivisions, (a) parent parcel before subdivision, (b) observed subdivision layout, (c) 

subdivision layout generated by the algorithm. 

 

The number of blocks of lots, number of streets, length of streets, and most of the time the 

orientation of streets do not match between model-generated and observed layouts. The 

correlation coefficient for the number of streets between model-generated and observed 

layouts was also found not to be significant statistically. The average percentage overlap of 

new streets between the model and observed layouts is only 22.4% compared to 91.4% for 

type A subdivision. This suggests that the positional overlap of streets between the model and 

observed layouts is inadequate, which also is confirmed by Figure 9. Table 3 and Table 4 

show the results of statistical analysis for the same indices discussed in Section 3.1.1 under a 

type A subdivision. Note that the null and alternate hypotheses are also the same as those 

describe in Section 3.1.1. 

 

 

 

 

 

 



Table 3. Correlation coefficient and t-Test statistics for two selected indices (type B) 

 
Correlation 

coefficient 
p value of t-Test 

Number of lots 0.98* 0.483 

Mean lot size 0.58   0.001 

* significant at 0.01 alpha level 

 

Table 4. Summary statistics for two selected indices (type B) 

 
Average value 

Observed Model 

LSSD 0.027 0.017 

MSI 506.28 1.25 

 

Interestingly, the number of lots still matches between the model and observed subdivision 

layouts, suggesting that the fundamental assumption behind the tool’s development, which is 

‘maximizing number of lots generated’, is valid irrespective of the subdivision type. The 

strong and significant correlation coefficient for the index ‘number of lots’ also supports this 

argument. However, the t-test for mean lot size provides evidence to reject the null 

hypothesis, implying that the model and observed layouts are significantly different in terms 

of lot sizes. Also, the correlation between model and observed layouts in terms of mean lot 

size is not significant.  

 

The difference of average LSSD values between observed and model-generated layouts are 

notably higher for the type B subdivision (0.01) compared to that for the type A subdivision 

(0.0002). As the size variation of observed lot sizes increases, the tool’s ability to reproduce 



the same variation decreases. Observed lots have also shown a large variation in shape as 

evident by a much higher MSI which the model has failed to achieve. This is obvious as the 

subdivision tool is generating same size (apart from the lots that are on the boundary) and 

same shaped (rectangular) lots.   

 

3.2 A comparison between the new subdivision tool and other similar tools 

In the last decade, researchers have begun to realise the importance of, and attempt to 

automate, land subdivision (Wakchaure, 2001; Ko et al., 2006; Alexandridis and Pijanowski, 

2007; Moreno et al., 2008; Vanegas et al., 2009; Morgan and O'Sullivan, 2009). However, a 

traditional land subdivision is carried out by an experienced surveyor based on field surveys, 

considerable forms of spatial and non-spatial data, and various zoning and development rules 

(Chen and Jiang, 2000; Wakchaure, 2001), which makes it quite challenging to automate. 

Recent work, including this study, does not yet fully replicate the traditional approach.  

However, valuable progress towards doing so is being made.  

 

The subdivision tool presented in this study is implemented using vector data model, whereas 

the subdivision tools developed by Ko et al. (2006), Alexandridis and Pijanowski (2007), 

Morgan and O'Sullivan (2009) use a raster data model. Moreover, these tools simulate 

subdivision at a coarse spatial resolution and ignore the street generation that should 

accompany a realistic land subdivision. Moreno et al. (2008) developed a tool that allows 

geometric transformation of objects using a mix of vector and raster based operations. 

Although this tool can simulate a polygon losing its area to the neighbouring polygon that 

exerts an influence on it, the output of the tool is not a realistic subdivision layout comprised 

of lots and streets.   

 



Similar to our subdivision tool, the tools developed by Wakchaure (2001) and Vanegas et al. 

(2009) are vector based, and produce large scale, realistic subdivision layouts comprised of 

lots and streets. However, Wakchaure’s (2001) subdivision tool is only semi-automated, 

requiring significant user intervention to generate subdivision layouts. This is a limitation 

when the subdivision forms part of a landuse change model or an urban growth model that 

subdivides land parcels during run time without any user intervention. The land subdivision 

mechanism presented by Vanegas et al. (2009) is fully-automated. However, the subdivision 

tool discussed in this paper can generate realistic ‘blocks’ and ‘rows’ of lots one would find 

in a residential development plan because it considers the initial spatial configuration of the 

target parcel in relation to neighbouring parcels and streets, and then generates the maximum 

possible number of lots and minimum possible number of streets in one step. Further, perhaps 

the most striking difference between the subdivision automation of Vanegas et al. (2009) and 

our subdivision tool is that the former employs a recursive binary division on a parcel until a 

minimum lot size is achieved, whereas our tool intelligently decides the appropriate 

subdivision layout for a given parcel that maximizes the use of space while sticking to the 

user specified minimum lot size and to the rule of providing access to all lots with minimum 

number of new streets. Furthermore, our subdivision tool is simple in design, involving few 

datasets and rules, while still achieving high standards of predictive capacity for type A 

subdivision.  

 

As mentioned earlier, computational efficiency is important for tools of this type to ensure 

they are feasible to run for actual case studies. Stating an average time to complete one 

subdivision iteration is somewhat misleading for a tool of this nature (Stevens and 

Dragicevic, 2007) as it depends on various factors such as total area, number of parent 

parcels and lot dimensions. As a general guideline, our tool takes less than ten seconds to 



subdivide an area of 6km*8km that contains nine large parcels into 92 lots of 550m*750m, 

and less than twenty five seconds to subdivide the same area into 293 lots of 300m*450m.   

 

In summary, our subdivision tool satisfies six out of seven criteria established in the 

introduction. It is computationally simple, yet fully automated. It generates both lots and 

streets in a subdivision layout, and makes sure that all lots have access to the street network. 

It can realistically portray parcel boundaries and shapes because it uses a vector based 

approach. This subdivision tool is also capable of selecting a subdivision layout for any given 

parcel in such a way that the space is best utilized. Currently, the tool can not generate cul-

de-sacs and streets that are oriented in many directions. These features will be introduced in 

future versions of the subdivision tool.   

   

 

4. CONCLUSION 

The land subdivision tool presented in this paper generates subdivision layouts for a given 

parcel and maximizes the number of lots while minimizing the number of new streets 

generated under the constraints of minimum lot width, lot length and street width. The tool 

also ensures that all lots in the layout have access to at least one street, despite the minimum 

number of streets it generates. The extended tool is capable of subdividing parcels of any 

shape. Subdivision layouts produced by the tool resemble the observed layouts very closely, 

when a parent parcel is subdivided to produce more or less parallel new streets, and when lots 

are oriented mostly in one direction (type A subdivision). As the observed layouts contain 

lots and new streets of various sizes oriented in many directions (type B subdivision), the 

layouts generated by the tool clearly deviate from observed. However, the majority of the 

observed subdivisions in our study area follow the type A scheme. Moreover, type A 



subdivision is also common in many urban, suburban and rural areas of Australia, areas of the 

United States where rectangular land survey systems is adopted (Brown, 2003 ; Donnelly and 

Evans, 2008), and virtually in any properly planned city in the world. Thus, the subdivision 

tool presented here has a broad, global-level applicability even at this initial development 

stage.  

 

The accuracy of model-generated layouts for irregular parcels can be improved in several 

ways. For example, sliver polygons (under-sized lots) created during the subdivision of an 

irregular parcel can be joined to adjacent, proper-sized lots. Alternatively, adjacent sliver 

polygons can be joined together to ensure a minimum lot size. Further, it would be helpful to 

allowing the most exterior lots to change their orientation if needed. A limitation of the 

current version of the tool is the fixed lot size used within a subdivision layout per parcel – 

addressing this would be helpful as well. While the aforementioned improvements to the 

model could enhance the accuracy of subdivision layouts generated for both type A and type 

B schemes, allowing the tool to generate streets that do not completely traverse a parcel (i.e. 

cul-de-sacs) could augment its ability to generate more close matches for type B subdivision 

layouts in particular. Though all of the improvements noted above are technically 

challenging, we plan to incorporate them into future versions of the subdivision automation 

tool. Finally, though we do not address it here, the frontage of lots generated by the 

subdivision tool compared to that of the observed lots could be an important assessment 

criterion, particularly in places like North America. Therefore, potential users of this tool are 

advised to test how the tool behaves in relation to lot frontage, prior to using it in areas where 

lot frontage is equally important as the lot size.  

 



Subdivision layouts generated by the tool discussed in this paper are not intended to replace 

layouts produced by a surveyor based on field measurements. This tool should instead be 

used for initial exploratory work prior to actual field survey. Aside from direct land 

subdivision tasks, many other application areas may benefit from the subdivision tool 

presented. For example, landuse change models could use this tool to simulate subdivision of 

land parcels, where modelling land subdivision phenomenon is an integral component of the 

overall model. Environmental planners and policy makers could use this subdivision tool to 

analyse habitat fragmentation due to land development, gaining an estimate and a means to 

visualize how habitats are fragmented and lost due to differing subdivision schemes. This 

would assist governing bodies to set appropriate zoning regulations to minimize the negative 

effects of land subdivision on biodiversity.  
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